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We investigate the linear stability of inviscid flows which are subject to a conservative
body force. This includes a broad range of familiar conservative systems, such as
ideal MHD, natural convection, flows driven by electrostatic forces and axisymmetric,
swirling, recirculating flow. We provide a simple, unified, linear stability criterion valid
for any conservative system. In particular, we establish a principle of maximum action
of the form

e =
1

2

∫
η̇2 dV − d2L(η) = constant, d1L(η) = 0,

d2L(η) = d2T (η)− d2V (η),

where η is the Lagrangian displacement, e is a measure of the disturbance energy,
T and V are the kinetic and potential energies, and L is the Lagrangian. Here d
represents a variation of the type normally associated with Hamilton’s principle,
in which the particle trajectories are perturbed in such a way that the time of
flight for each particle remains the same. (In practice this may be achieved by
advecting the streamlines of the base flow in a frozen-in manner.) A simple test
for stability is that e is positive definite and this is achieved if L(η) is a maximum
at equilibrium. This captures many familiar criteria, such as Rayleigh’s circulation
criterion, the Rayleigh–Taylor criterion for stratified fluids, Bernstein’s principle for
magnetostatics, Frieman & Rotenberg’s stability test for ideal MHD equilibria, and
Arnold’s variational principle applied to Euler flows and to ideal MHD. There
are three advantages to our test: (i) d2T (η) has a particularly simple quadratic
form so the test is easy to apply; (ii) the test is universal and applies to any
conservative system; and (iii) unlike other energy principles, such as the energy-
Casimir method or the Kelvin–Arnold variational principle, there is no need to
identify all of the integral invariants of the flow as a precursor to performing the
stability analysis. We end by looking at the particular case of MHD equilibria. Here
we note that when u and B are co-linear there exists a broad range of stable steady
flows. Moreover, their stability may be assessed by examining the stability of an
equivalent magnetostatic equilibrium. When u and B are non-parallel, however, the
flow invariably violates the energy criterion and so could, but need not, be unstable. In
such cases we identify one mode in which the Lagrangian displacement grows linearly
in time. This is reminiscent of the short-wavelength instability of non-Beltrami Euler
flows.
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1. Introduction
1.1. Our model system

We are interested in the linear stability of non-dissipative flows. In particular, we shall
develop a stability criterion which may be used to examine the stability of steady
solutions of any incompressible, conservative system. However, it is convenient to
have a model system to illustrate the ideas. We shall choose

∂Ω

∂t
= ∇× (u×Ω)− ∇× (H × J ) + ∇× (f∇Φ), (1.1)

∂H

∂t
= ∇× (u×H),

DΦ

Dt
= 0, (1.2)

with the boundary conditions: u · n = H · n = Φ = 0 on the boundary. Here u is the
velocity field, Ω is the vorticity, H is some frozen-in vector field which could, though
need not, be a magnetic field, B, and Φ is any materially conserved scalar field.† The
auxiliary field f is taken as a prescribed function of position f = f(x), and J is defined
through J = ∇×H . This encompasses a broad range of familiar conservative flows,
including Euler flows, ideal MHD flow, motion driven by buoyancy, flows driven by
electrostatic forces, and poloidal motion driven by the centrifugal force associated
with some frozen-in distribution of angular momentum, i.e. swirling, recirculating
flow. We shall develop a single, universal stability criterion for these flows. Note that
(1.1) can also be written as

∂u

∂t
= u×Ω− ∇C + f∇Φ−H × J , (1.3)

where C is Bernoulli’s function.

1.2. A general stability criterion based on the Lagrangian

We shall show that flows governed by (1.1), or (1.3), and (1.2) have the property that,
for virtually all (physically realizable) types of small-amplitude disturbances,

e =
1

2

∫
η̇2 dV − d2L = constant, d1L = 0. (1.4)

Here L = T − V is the Lagrangian, η is (closely related to) the Lagrangian displace-
ment for the disturbance, e is the disturbance energy, and d represents a variation
of the type normally associated with Hamilton’s principle. (In fact, d represents
a perturbation of the particle trajectories created by advecting the streamlines in a
‘frozen-in’ manner, d1 and d2 being the first- and second-order variations respectively.)
Moreover, as we shall see, d2L is a function only of η and so we have

1

2

∫
η̇2 dV = e0 + d2L(η), d1L = 0, (1.5)

where e0 is the initial disturbance energy. If we take 1
2

∫
η̇2 dV as a measure of the

disturbance, then stability is ensured whenever d2L is negative for all possible η. (||η̇||2
is then bounded from above by e0.) That is to say, a sufficient, though not necessary,
condition for stability is that L is a maximum at equilibrium. This is an obvious
extension of the stability test for static equilibria, such as magnetostatics or stationary

† For MHD flows the body force is J ×B/ρ, µJ = ∇×B. Here we use H to represent the scaled

magnetic field B/(ρµ)1/2.
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stratified fluids, in which,

1

2

∫
η̇2 dV = e0 − δ2V , δ1V = 0. (1.6)

Here stability is ensured if V (the potential energy) is a minimum at equilibrium.
Rayleigh’s circulation criterion, the Rayleigh–Taylor criterion and Bernstein’s theory
for magnetostatics (Bernstein et al. 1958) are all examples of (1.6). (The difference
between δ and d variations is explained in detail later. Here we just note that δ is
taken to be any physically realizable variation, while d is a special subset of δ.)

In fact, it turns out that (1.4) and (1.5) are quite general and not restricted to systems
governed by (1.1), or (1.3), and (1.2). Rather, they hold for any non-dissipative flow
in which V is a function of η and x alone. Moreover, as we shall see, a less stringent
test for stability is simply that e is positive definite.

Now the utility of (1.5) lies in the fact that, as we shall see, d2L(η) is particularly
easy to evaluate, so that in practice our criterion is simple to implement. Moreover,
the derivation and implementation of our criterion requires no knowledge of the
integral invariants of the system. (Classical energy methods in stability theory, such
as the Kelvin–Arnold variational principle or the energy-Casimir method require, as
a first step, that all integral invariants of the system be identified.) Yet, as we shall
see, our criterion encompasses many of the well-known energy theorems for linear
stability, such as Rayleigh’s circulation criterion, the Rayleigh–Taylor criterion for
stratified fluids, Bernstein et al.’s principle for magnetostatics, Frieman & Rotenberg’s
criterion for MHD, and the Kelvin–Arnold variational principle applied to Euler
flows and to MHD. We might refer to (1.5) as a principle of maximum (rather than
least) action.

In summary then, we claim that an equilibrium solution of a conservative system
is stable whenever e is positive definite and this is achieved when L is a maximum
under a frozen-in perturbation of the u-lines. It is the unifying nature of this stability
criterion which is the primary novelty of this paper.

1.3. Classical energy methods in stability analysis

Now there are several systematic approaches to developing sufficient conditions for the
stability of ideal (conservative) flows. The Kelvin–Arnold variational principle, and the
energy-Casimir method are, perhaps, the best known. (See Morrison 1998 for a nice
review of these.) Both methods are, in effect, elaborate procedures for constructing an
(energy-like) functional which is: (i) quadratic in the disturbance; and (ii) conserved
by the linearized dynamics. Provided the resulting integral invariant is non-zero for all
possible disturbance shapes, it can be used like a Lyaponov functional to bound the
growth of disturbances. (That is to say, if ||δu|| is some norm for the disturbance, and
δ2F a conserved quadratic function of δu, then the flow will be unstable if ||δu|| grows
despite the conservation of δ2F , and so for instability we require ||δu||2/δ2F → ∞.
Consequently, if there exist bounds of the form |δ2F | > λ ||δu||2 for all δu, then the
flow cannot be unstable. In short, stability is ensured if δ2F is positive or negative
definite.) In our theory e will provide the conserved quadratic functional.

However, as we shall see, there exists a third procedure for creating a conserved,
quadratic functional. Like the Kelvin–Arnold and energy-Casimir methods it relies
(in some sense) on the conservation of energy. However, unlike these other methods,
it is the Lagrangian, L, rather than the energy, E, which plays the central role.
(Hence the appearance of L in (1.4).) We shall describe this procedure in more detail
later, but we might note in passing that it relies on expanding the Lagrangian up to
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quadratic terms in η, using Lagrange’s equations to discard the first variation in L,
and then constructing a conserved Hamiltonian for the truncated system. In order to
differentiate our procedure from the Kelvin–Arnold and energy-Casimir methods we
must briefly summarize these other approaches. Later we shall show the precise link
between (1.4) and the Kelvin–Arnold variational principle.

In the Kelvin–Arnold method the appropriate functional is the disturbance energy
∆E = E−E0, where E0 is the energy of the base flow. Evidently, ∆E is conserved by the
perturbed flow. However, in order to ensure that ∆E is quadratic in the disturbance it is
necessary to insist that δ1E = 0. It turns out that this can be achieved by restricting the
choice of disturbances to those which conserve the topological (frozen-in) invariants
of the flow. (Such perturbations are termed isovortical perturbations in the case
of Euler flows, or generalized isovortical perturbations for other systems.) In such
cases δ2E provides a conserved, quadratic measure of the disturbance (as far as the
linearized dynamics are concerned) and stability to infinitesimal disturbances is then
ensured if δ2E is positive or negative definite. The art of applying the Kelvin–Arnold
variational principle lies in spotting how to conserve all of the topological (frozen-
in) invariants when calculating ∆E, i.e. knowing how to construct the generalized
isovortical perturbations. This is readily achieved for Euler flows (Arnold 1966a;
Moffatt 1986) where it is necessary only to ensure that Ω is frozen-in during the
disturbance. However, it becomes quite intricate when it comes to MHD (Friedlander
& Vishik 1990) where it becomes necessary to ensure that B is frozen-in as well as
conserve the cross-helicity of B and u.

In the energy-Casimir method, on the other hand, the appropriate functional is
A = E + C where C (the Casimir) is an integral invariant for the flow which reflects,
as generally as possible, the frozen-in (topological) invariants such as helicity, cross-
helicity etc. If C is constructed in a sufficiently general way then it is usually possible
to choose the precise form of C such that δ1A = 0 at equilibrium (i.e. we choose C
so that δ1C = −δ1E). Linear stability is then ensured if δ2A is positive or negative
definite (Arnold 1966b; Holm et al. 1985). The Kelvin–Arnold and energy-Casimir
methods are, in fact, closely related with C playing the role of a Lagrange multiplier,
effectively building in the topological constraints required by the Kelvin–Arnold
method (Holm et al. 1985; Davidson 1998).

The use of conserved, quadratic functionals (which are non-zero for all possible
disturbance shapes) to bound the growth of perturbations is often referred to as
establishing formal stability.

1.4. A trivial example to illustrate the different energy-based stability criteria

It is important to differentiate our procedure from the Kelvin–Arnold and energy-
Casimir methods. A trivial example taken from mechanics will suffice to show the
difference. Consider a particle of mass m moving in a circular orbit of radius r0
under the influence of the radial force F = f(r)êr . Suppose that f has potential V ,
f = −V ′(r) and let Γ = r2θ̇ be the angular momentum of the particle. (We restrict
ourselves to two-dimensional motion and use polar coordinates r and θ.) We now
perturb the trajectory, r = r0 + η, θ = θ0 + ζ/r0, and examine the linear stability of
the perturbed trajectory. For this simple system a conventional perturbation analysis
provides the necessary and sufficient conditions for stability. The flow is stable if and
only if br3

0V
′′
0 + 3r2

0V
′
0c > 0.

Let us now see if we can obtain the same information using the energy principles
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described above. The energy of the particle on the perturbed path is

E = T + V = 1
2
m (ṙ2 + r2θ̇2) + V = E0 + δ1E + δ2E + · · · ,

where δ1 and δ2 represents terms which are linear and quadratic in the disturbance
respectively. For arbitrary values of η and ζ, δ1E is non-zero. Thus, despite the
conservation of E, δ2E does not, in general, provide a conserved, quadratic measure
of the disturbance. (Remember, formal stability requires that we can find a conserved,
quadratic measure of the disturbance which is positive or negative definite.) In
the Kelvin–Arnold procedure we remedy this as follows. We note that the particle
conserves not only E but also Γ . We now restrict ourselves to initial perturbations in
which δΓ = 0. Since δΓ = 0 at t = 0, it must remain zero for all t. Thus we write E
as

E = 1
2
m(ṙ2 + Γ 2/r2) + V (r)

and treat Γ as a constant, Γ = Γ0. For this restricted set of disturbances we find
δ1E = 0 and δ2E = 1

2
mη̇2 + 1

2
η2[V ′′ + 3V ′/r]0. In this case conservation of E does

indeed ensure that δ2E is conserved by the disturbance (to quadratic order) and
so we have formal stability if δ2E > 0 for all possible η and η̇. Thus stability is
ensured if br3V ′′ + 3r2V ′c0 > 0, which coincides with our conventional perturbation
analysis. Note that the Kelvin–Arnold method only provides a stability criterion for a
restricted set of perturbations (in this case ones where δΓ = 0), although it is readily
verified that the value of δΓ at t = 0 does not influence the stability of the perturbed
trajectory.

The energy-Casimir method also requires that we spot that Γ is conserved by
the particle, although this time there is no need to restrict the form of the initial
disturbance. It proceeds as follows. We introduce the generalized invariant, A =
E + C(Γ ) where C is an arbitrary function of Γ (a Casimir). We now choose C such
that δ1A = 0 for all possible choices of η and ζ. (This requires C = −mθ0Γ .) It
follows that δ2A is conserved by the motion. It is readily confirmed that

δ2A = 1
2
m(η̇2 + ζ̇2) + 1

2
η2[V ′′0 − V ′0/r0].

We have formal stability if δ2A > 0 for all (η, ζ) and this requires that V ′′0 −V ′0/r0 > 0.
This coincides with our perturbation analysis since V ′′0 − V ′0/r0 > 0 ensures that
V ′′0 + 3V ′0/r0 > 0. Thus the energy-Casimir method has provided a sufficient (though
not necessary) condition for stability.

Our (third) approach does not require that the Casimir invariants of the system (in
this case Γ ) be identified, although it still relies on the conservation of energy. We
proceed as follows. Let L = T − V and η and ζ be generalized coordinates, qi. We
now evaluate,

L = L0 + δ1L+ δ2L+ · · ·
and calculate the generalized momenta, pi = ∂L/∂q̇i. The final step is to evaluate the
Hamiltonian, H ,

H =
∑

(piq̇i)− L.
Since L is not an explicit function of time, H is an invariant. It turns out that

e = H + L0 = 1
2
m(η̇2 + ζ̇2) + 1

2
η2[V ′′0 − V ′0/r0].

Once again we have a conserved quadratic measure of the disturbance and the motion
is stable provided that e is positive definite.
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Now in this simple example our third procedure offers no obvious advantage over
the others. However, when it comes to more complex systems, where it is by no means
obvious what the Casimir invariants are, it does provide an advantage, as we shall see.

2. A general linear stability criterion for conservative systems
We shall now show how this third procedure generalizes to fluid equilibria. The

key is to identify an appropriate set of generalized coordinates for the disturbance.
At first sight it might seem that the Lagrangian particle displacement (that is, the
displacement of the particles from their equilibrium trajectories) should provide a
suitable set of generalized coordinates. However, this is not the case. The problem is
a subtle one and relates to the fact that the Lagrangian particle displacement field,
ζ(x), is not solenoidal. We can remedy this by introducing a closely related field,
usually called the virtual displacement field, which is defined as η = ζ− 1

2
ζ · ∇ζ+ HOT.

We shall see that this second field has a simple physical interpretation and is indeed
solenoidal. In order to illustrate the differences between η and ζ, and to see how they
are used to calculate perturbations in energy, it is useful to consider first the trivial
problem of the stability of a static magnetic field. We then generalize the method to
any conservative system and to equilibria which are steady rather than simply static.

2.1. A simple example: the stability of a static magnetic field

Consider the magnetostatic equilibrium of an ideal fluid. The fluid and magnetic field,
B, are both assumed to be contained in a volume, V , with a solid surface, S , and the
equilibrium is governed by

J 0 × B0 = ∇P0, B0 · dS = 0. (2.1)

Here the subscript 0 indicates a steady, base configuration whose stability is in
question, and dS is an element of the boundary, S . Now suppose that this equilibrium
is slightly disturbed, and that during the initial disturbance the magnetic field is frozen
into the fluid. Let ζ(x, t) be the displacement of a particle, p, from its equilibrium
position x,

ζ(x, t) = xp(t)− xp(0), xp(0) = x.

For t > 0, B will be frozen into the fluid and the resulting velocity field, u(x, t), is
related to the instantaneous particle displacement, ζ, by

∂ζ

∂t
= u(x+ ζ, t) = u(x) + ζ · ∇u+ · · · . (2.2)

Let us now evaluate the change in magnetic energy, EB , which results from the particle
displacement, ζ. We first expand EB in a series

EB(ζ, t) =

∫
(B2/2µ) dV = EB0 + δ1EB + δ2EB + · · · .

Here δ1EB and δ2EB are the first- and second-order changes in EB , ζ being assumed
small at all times. We shall shortly see that δ1EB = 0, while the stability of the
magnetostatic equilibrium is determined by the sign of δ2EB . The question, then, is
how to evaluate δ1EB and δ2EB . We now employ a trick. EB depends only on the
instantaneous position of the fluid particles and not their previous histories. That is,
EB is completely determined by the instantaneous spatial distribution of B. There are
many ways in which each particle could get from x to x+ζ, but, since EB does not care
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about the history of the particles, we shall consider the simplest. Following Moffatt
(1986), we suppose that for a short time τ we apply an imaginary, steady, solenoidal
velocity field, v(x), to the fluid. We choose v(x) such that it shifts the fluid from its
equilibrium configuration to x + ζ. Since the fluid is incompressible v(x) must be
solenoidal. Now B is frozen into the fluid during the application of v and so we have

∂B

∂t
= ∇× (v × B), 0 < t < τ. (2.3)

It follows that the first- and second-order changes in B are

δ1B = ∇× (η × B0), δ2B = 1
2
∇× (η × δ1B), (2.4a, b)

where η = vτ. This new fields satisfies ∇ · η = 0 and η · dS = 0. It is called the virtual
displacement field (Moffatt 1986). However, η and ζ are not identical: from (2.2)

ζ = η + 1
2
η · ∇η + · · · , η = ζ − 1

2
ζ · ∇ζ + · · · . (2.5a, b)

Thus, the particle displacement and the virtual displacement are equal only at first
order. (This turns out to be of crucial importance in our derivation of (1.4).) Let
us now evaluate the changes in EB which results from the application of η. The
first-order change is

δ1EB =
1

µ

∫
(B0 · δ1B) dV =

1

µ

∫
B0 · ∇× [η × B0] dV . (2.6)

However the integrand may be rewritten in terms of divergences which, in view of
(2.1), integrate to zero. The second-order change in EB is

δ2EB =
1

µ

∫ [
1
2
(δ1B)2 + B0 · δ2B

]
dV ,

from which

δ2EB =
1

2µ

∫ [
b2 + B0 · ∇× [η × b]] dV , b = ∇× [η × B0]. (2.7)

This expression gives us the instantaneous perturbation in magnetic energy and mag-
netic field (to leading order) in terms of the virtual displacement field, η(x, t). Now
the total energy, E = T + EB , is conserved in ideal MHD. It follows that, for our
perturbed magnetostatic equilibrium,

E − E0 =
1

2

∫
[ρu2] dV + δ2EB = constant (2.8)

(cubic- and higher-order terms have been neglected here). We also have, to leading
order in η, u(x, t) = η̇(x, t). Conservation of energy therefore gives us∫ ⌊

1
2
ρη̇2
⌋

dV + δ2EB(η) = constant = ∆E, (2.9a)

where η̇ indicates a partial derivative with respect to time. We now take as our def-
inition of stability the condition that the kinetic energy of the disturbance is always
bounded from above by the initial energy of the disturbance, ∆E. It follows that an
equilibrium is stable if δ2EB is positive for all possible shapes of disturbances. That
is to say, stability is ensured if δ2EB > 0 for all possible η. Note that we could rewrite
(2.9a) as

e =
1

2
ρ

∫
η̇2 dV + δ2V (η) = constant, δ1V (η) = 0, (2.9b)

which now becomes a special case of (1.4).
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2.2. A general stability criterion based on the Lagrangian

We now show that, for any conservative incompressible system,

e =
1

2

∫
η̇2 dV − d2L(η) = constant, (2.10)

which is a generalization of (2.9b). The proof relies on expanding the Lagrangian
up to second order in the particle displacements, invoking Lagrange’s equation to
dispense with the first variation in L, and then performing a transformation to create
a conserved Hamiltonian, which is quadratic in the disturbance. The first and most
important step is to introduce the Lagrangian displacement,

ζ(x, t) = xp(t)− xp0(t)
where xp0 is the position vector of particle p in the base flow and xp is the position
of the same particle in the perturbed flow. The generalization of (2.2) is then

∂ζ

∂t
+ u0(x) · ∇ζ =

Dζ

Dt
= u(x+ ζ, t)− u0(x). (2.11)

In the linear (small-amplitude) approximation, this becomes

∂ζ

∂t
+ u0 · ∇ζ = δu(x, t) + u0(x+ ζ)− u0(x), (2.12)

which, using the approximation u0(x+ ζ)− u0(x) = ζ · ∇u0, simplifies to

δ1u = ζ̇ + ∇× [ζ × u0]. (2.13)

The key step is now to switch from ζ to η(x, t). This greatly simplifies the subsequent
analysis. Since η and ζ are equal to leading order, (2.13) yields

δ1u = η̇(x, t) + ∇× [η × u0]. (2.14)

Returning to (2.11), but retaining terms up to second order, we find

δ2u = 1
2
∇× [η × η̇] + 1

2
∇× [η × (∇× (η × u0))]. (2.15)

We now introduce some notation. We take δ to represent an arbitrary (physically
realizable) variation of some field, say δu. We take d, on the other hand, to represent a
frozen-in variation of any field. In the case of the H-field, the two coincide (δH = dH)
since (1.2) demands that, if H is frozen into the fluid during the initial perturbation,
then it is frozen-in for all subsequent time. In the case of u, however, du does not
represent a dynamically meaningful perturbation. Nevertheless, we are still free to
ask what happens to u and T in the event of a variation in which the u-lines are
frozen-in. What we choose to do with that information is another matter. From (2.4),
(2.6) and (2.7) we have, in terms of the virtual displacement field,

d1u = ∇× (η × u0), d2u = 1
2
∇× [η × d1u], (2.16a, b)

d1T =

∫
(u0 · d1u) dV , d2T =

1

2

∫ [
(d1u)2 + 2u0 · d2u

]
dV . (2.17a, b)

Evidently,

δ1u = η̇ + d1u, δ2u = 1
2
∇× [η × η̇] + d2u. (2.18)

(The equivalent expressions in terms of ζ are far more complicated.) We shall return
to these expressions shortly. In the meantime, let us try to understand the significance
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of d-perturbation as applied to u. We shall use the term ‘d-variation’ to mean a
perturbation of the equilibrium configuration in which: (i) u is perturbed according
to (2.16a, b), i.e. the u-lines are frozen-in during the perturbations; and (ii) any
auxiliary field, such as H and Φ in (1.1), are perturbed in a manner compatible
with the auxiliary equations (1.2), i.e. H is frozen-in and Φ is materially conserved.
(This requires that the perturbations in H are given by (2.4) while those of Φ satisfy
δ1Φ = −η · ∇Φ.) Also, let us write a generalized version of (1.1)

∂u

∂t
= u×Ω− ∇C + f, (2.19)

where f is any conservative body force, such as −[H×J ]+f∇Φ. Let V be the potential
energy associated with f. This could, for example, be magnetic energy, gravitational
energy, electrostatic energy or some combination of these. From (2.16a) and (2.17),

d1T =

∫
[Ω0 · (η × u0)] dV = −

∫
η · f0 dV = d1V . (2.20)

It follows that d1L = 0 under this type of variation, which is the first hint that there is,
in fact, some significance to our ‘d-variation’. Actually, this is discussed in Davidson
(1998) in the context of two-dimensional flows. The physical significance of du is that,
by advecting the u-lines, we create a new set of particle trajectories with the special
property that the time of flight between two fixed points is preserved. This is precisely
the sort of perturbation demanded by Hamilton’s principle and (in two dimensions)
d1L = 0 is, in fact, a direct consequence of Hamilton’s principle (Davidson 1998). In
three dimensions we must do a little more work to explain the significance of d1L = 0.
Once again it rests on the fact that the time of flight of a fluid particle is preserved
by the d-variation. To see that this is so consider the time of flight equation

tB − tA =

∫ B

A

dl

|u| =
1

Φ

∫ B

A

dV . (2.21)

Here Φ is the volume flux down a stream-tube which surrounds a path-line linking A
and B, and

∫
dV is the volume of the stream-tube (of rectangular cross-section) that

may be constructed from pairs of intersecting stream-surfaces which, in turn, might
be locally represented by Clebsch variables. Such stream-surfaces are frozen into the
fluid during a d-perturbation and so, as in two dimensions, the time of flight of fluid
particles is preserved. This ensures that the first variation of the action integral is
zero and it is this which lies behind (2.20).

So the idea of a ‘d-variation’ has some physical basis. We now examine second
variations and this will lead to our stability criterion (2.10). The first step is to
calculate ∆T = T − T0 and ∆L = L − L0 for an arbitrary (physically realizable)
δ-variation of the equilibrium state. We have

δ1T =

∫
u0 · δ1u dV , δ2T =

1

2

∫ [
(δ1u)2 + 2u0 · δ2u

]
dV .

Next, using (2.18) to substitute for δ1u and δ2u, we find

δ1T = d1T (η) +

∫
u0 · η̇ dV , (2.22)

δ2T = d2T (η) +
1

2

∫
η̇2 dV + Î(η, η̇), (2.23)
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where Î is bi-linear in η and η̇ and is given by

Î =
1

2

∫
η̇ · [2d1u+Ω0 × η] dV . (2.24)

Now if f is conservative then the potential energy, V , will depend only on the
instantaneous configuration of the flow and not on its history. Thus,

∆V = V − V0 = δ1V (η) + δ2V (η) + HOT.

This gives us an expression for ∆L in terms of η and η̇:

∆L =
1

2

∫
η̇2 dV +

[
d1T (η)− δ1V (η)

]
+
[
d2T (η)− δ2V (η)

]
+ I(η, η̇) + HOT,

where I(η, η̇) = Î +
∫
u0 · η̇ dV . Now recall that we defined our ‘d-variation’ such

that u is perturbed according to (2.16a, b), but the auxiliary fields, such as H and
Φ, are varied in any physically realizable manner. (This requires that H is frozen-in
and Φ is materially conserved.) It follows that, as a matter of notation, we can write
δ1V = d1V and δ2V = d2V . Our expression for the Lagrangian becomes

∆L =
1

2

∫
η̇2 dV +

[
d1T (η)− d1V (η)

]
+
[
d2T (η)− d2V (η)

]
+ I(η, η̇).

We now use η as a set of generalized coordinates describing the instantaneous state of
the system. Note that ∆L is a function only of η and η̇. It is not an explicit function
of time. Now for a system with a finite number of degrees of freedom, ηi, we have

d

dt

(
∂L

∂η̇i

)
− ∂L

∂ηi
= 0, (2.25)

so that steady solutions are represented by ∂L/∂ηi = 0. Also if L = L(ηi, η̇i) is not an
explicit function of time the system possesses a conserved Hamiltonian,

e = η̇i
∂L

∂η̇i
− L = constant.

The equivalent results for our continuous system are that d1L = 0 for an equilibrium
solution and

e =

[∫
η̇2 dV + I(η, η̇)

]
− ∆L = constant.

The fact that d1L = 0 follows directly from Lagrange’s equations is reassuring since
(for two-dimensional flows) we have already noted that this may be deduced from
Hamilton’s principle. Next, substituting for ∆L yields, at last, our conserved, quadratic
functional:

e =
1

2

∫
η̇2 dV − d2L(η) = constant, d1L(η) = 0, (2.26)

d2L(η) =
1

2

∫ [
(d1u)2 + u0 · ∇× (η × d1u)

]
dV − δ2V (η). (2.27)

This is the central result of our paper. Since e is a conserved quadratic measure of
the disturbance many stability criteria may be established on the back of (2.26). We
might refer to (2.26) as a principle of maximum action.

The following two theorems follow directly from (2.26) and (2.27).
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Theorem 1. The equilibrium of any conservative, incompressible flow possesses (for-
mal) stability provided that

d2L(η) =
1

2

∫ [
(d1u)2 + u0 · ∇× (η × d1u)

]
dV − δ2V (η), d1u = ∇× (η × u0)

is negative definite for all possible η.

Theorem 2. The equilibrium of any conservative, incompressible flow possesses (for-
mal) stability provided that

e =
1

2

∫
η̇2 dV − d2L(η), η̇ = δ1u− ∇× (η × u0)

is positive or negative definite for all possible perturbations of the equilibrium.

We shall see shortly that special cases of Theorem 1 are Rayleigh’s circulation
criterion, the Rayleigh–Taylor criterion for stratified fluids, Bernstein’s principle for
magnetostatics, and Friedlander & Vishik and Frieman & Rottenberg’s stability test
for ideal MHD equilibria. A special case of Theorem 2 is Arnold’s variational principle
for Euler flows.

3. The governing equation for the virtual displacement field
Note that (2.25) also furnishes the governing equation for η(x, t). Such an equation

is useful as it allows us to show the relationship between our criterion and the classical
results of Rayleigh, Kelvin, Arnold and others. Substituting for ∆L in (2.25) yields

η̈ + 2u0 · ∇η̇ = ∇(η̇ · u0) + F (η), (3.1)

where

Fi(η) =
δ[d2L(η)]

δηi
. (3.2)

The form of F (η) depends on the nature of the body force. There are two cases of
particular interest here: f = J ×H and f = f∇Φ. When f = J ×H , as in ideal MHD,
the H-field is frozen-in during the perturbation and we have

δ2V (η) =
1

2

∫ [
(d1H)2 +H0 · ∇× (η × d1H)

]
dV , d1H = ∇× (η ×H0). (3.3)

(This is just δ2EB given by (2.7).) In this case (3.2) yields, after a little algebra,

F = u0 × b∇× d1u)c+ d1u× [∇× u0]−H0 × [∇× (d1H)
]

−d1H × [∇×H0] + 1
2
∇(η · ∇C0). (3.4)

(In deriving (3.4) use is made of the fact that

u0 × [∇× (η ×Ω0)] + [∇× (η × u0)]×Ω0 + J 0 × [∇× (η ×H0)]

+[∇× (η × J 0)]×H0 = −∇(η · ∇C0), (3.5)

which stems directly from the equilibrium condition u0 ×Ω0 + J 0 ×H0 = ∇C .)
When the body force is of the form f(x)∇Φ, on the other hand, we require that Φ

is materially conserved during the perturbation and so

δ1Φ = −η · ∇Φ, δ2Φ = − 1
2
η · ∇(δ1Φ).
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The potential energy is V =
∫
fΦ dV , from which

δ2V (η) = −1

2

∫
(η · ∇Φ)(η · ∇f) dV . (3.6)

In this case (3.2) yields

F (η) = u0 × (∇× d1u) + d1u× (∇× u0)− δ1Φ∇f0 + ∇(·), (3.7)

where ∇(·) represents a gradient term which is unimportant.
It is readily confirmed that, for both (3.4) and (3.7), F (η) is self-adjoint in the sense

that ∫
η2 · F (η1) dV =

∫
η1 · F (η2) dV .

Moreover, if we take the dot product of (3.1) with η̇ and integrate over the domain,
we obtain

1

2

∫
η̇2 dV − 1

2

∫
F · η dV = constant. (3.8)

It follows from (2.26) that

W (η) =
1

2

∫
F · η dV = d2L(η), (3.9)

which completes the link between the linearized force operator, F (η), and the La-
grangian, d2L(η), which is the basis of our stability criterion. An expression similar
to (3.8) was derived by Frieman & Rottenberg (1960) for ideal MHD. We shall
now show that the classical results of Rayleigh, Kelvin, Arnold, Bernstein et al. and
Frieman & Rottenberg are all special cases of (2.26). We start with Euler flows, in
which f = 0.

4. Euler flows and Arnold’s theorem: a special case for our criterion
We now show that the Kelvin–Arnold variational principle, as applied to Euler

flows (Arnold 1966a), is a special case of (2.26). We start by noting that, when f = 0,
(3.1) becomes

η̈ + 2u0 · ∇η̇ = u0 × (∇× d1u) + d1u× (∇× u0) + ∇(·). (4.1)

This may be integrated once to give

η̇ = η ×Ω0 − ∇× (η × u0) +m+ ∇(·), (4.2)

where m is independent of η and is governed by

∂m/∂t = ∇× (u0 ×m).

It follows from (2.18) that

δ1u = η ×Ω0 +m+ ∇(·). (4.3)

If, at t = 0, we specify that m = 0, then m will be zero for all time. In such a case

δ1Ω = ∇× (η ×Ω0). (4.4)

Evidently, this is a perturbation in which the Ω-lines are frozen into the fluid – an
isovortical perturbation. The Kelvin–Arnold principle states that a steady Euler flow is
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stable provided that δ2T is positive definite or negative definite under an isovortical

perturbation. Let us denote such a perturbation by d̂, to distinguish it from a general
perturbation, δ. However, using (2.18) it is readily confirmed that

d̂2T =
1

2

∫
η̇2 dV − d2T = e. (4.5)

Thus the Kelvin–Arnold principle is simply a special case of Theorem 2. We now
turn to flows in which f is non-zero.

5. More special cases of our criterion: classical stability criteria for forced
flows

We now explore the consequences of (2.26) for flows subject to a body force. We
shall see that Bernstein’s theorem, Rayleigh’s circulation criterion for swirling flow,
the Rayleigh–Taylor criterion for stratified fluid, and Arnold’s variational theorem
applied to MHD all follow directly from (2.26). We start with static equilibria, in
which u0 = 0.

5.1. Static equilibria

If u0 = 0 then (2.26) simplifies to

e =
1

2

∫
η̇2 dV + d2V (η) = constant. (5.1)

The integral on the right is now the kinetic energy of the disturbance, while V may,
for example, be magnetic energy or gravitational potential energy. Equation (5.1)
also applies to the case of an axisymmetric swirling flow, subject to axisymmetric
perturbations, (0, uθ(r), 0). V is then the potential energy of the centrifugal force,
(Γ 2/r3)êr , associated with the angular momentum, Γ = ruθ . In such a case DΓ/Dt = 0
and so we have a force f∇Φ − ∇(·) with u0 = 0, f = (2r2)−1 and Φ = Γ 2. Equation
(3.6) then yields (Davidson 1998)

d2V =

∫ [
1
2
(d1Γ )2 + Γ0d

2Γ
]
r−2 dV =

∫
η2
r

2r3

dΓ 2
0

dr
dV .

Note that the integrand on the right is simply Rayleigh’s descriminant. Necessary and
sufficient conditions for the stability of magnetostatic equilibria (Bernstein’s theorem),
swirling flow (Rayleigh’s criterion) and stratified fluid, all follow directly from (5.1).
In each case we simply require that V (η) is a minimum at equilibrium. The sufficiency
of d2V > 0 follows from conservation of energy,

1

2

∫
η̇2 dV 6 e0 for all t.

The necessity of d2V > 0 (for all η) requires a little more work. One method of
proof is given by Biskamp (1993) for the particular case of magnetostatics, but this is
readily generalized to all static equilibria.

The argument is as follows: suppose that W (η), which is defined by (3.9) and equals
−d2V (η) for static equilibria, is indefinite in sign or else positive definite. Then for
some η = η∗ we have

W (η∗) = γ2

∫
1
2
(η∗)2 dV ,
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where γ is a real constant. Next we note that (3.1) is second order in t and so η and
η̇ may be specified separately at t = 0. We choose η(0) = η∗ and η̇(0) = γη∗. The
disturbance energy is then zero and we have

1

2

∫
η̇2 dV = W (η). (5.2)

We now return to (3.1) which, on multiplication by η and integration over V , yields

1

2
Ï +

∫
η · (u0 · ∇η̇) dV =

1

2

∫
η̇2 dV +W (η) =

∫
η̇2 dV . (5.3)

Here I = 1
2

∫
(η2) dV . Now the Schwartz inequality gives us

İ2 6 2I

∫
η̇2 dV

and so (5.3) can be rewritten as

IÏ − İ2 > 2I

∫
η̇ · (u0 · ∇η) dV . (5.4)

When u0 = 0, the right-hand side of (5.4) is zero. This ensures exponential growth at a
rate I > I(0) exp [2γt]. (This can be seen from making the substitution y = ln (I/I(0))
and integrating the resulting equation, ÿ > 0.) Thus static energy criteria, such as
Bernstein’s theorem or Rayleigh’s circulation criterion, provide necessary as well as
sufficient conditions for stability. Note, however, that when u0 is non-zero, (5.4) allows
no such deduction.

5.2. Non-static equilibria in MHD

We now consider the relationship between (2.26) and the Kelvin–Arnold variational
principle applied to MHD. Consider the perturbations

d̂1H = ∇× [η̂ ×H0], (5.5)

d̂2H = 1
2
∇× [η̂ × d̂1H], (5.6)

d̂1Ω = ∇× [η̂ ×Ω0] + ∇× [η̂∗ ×H0], (5.7)

2d̂2Ω = ∇× bη̂ × d̂1Ωc+ ∇× bη̂∗ × d̂1Hc. (5.8)

Here we have used d̂ and η̂ rather than δ and η since (5.5)–(5.8) represent a restricted
set of perturbations not unlike, but different from, the d-variation. As before, η̂
represents a virtual displacement field. However, now we have a second solenoidal
field, η̂∗, which is independent of η̂ and need not satisfy η̂∗ · dS = 0. These equations
were first proposed by Friedlander & Vishik (1990) for MHD equilibria and later
proposed by Davidson (1998) for two-dimensional solutions of our model system
(1.1)–(1.2). Now (5.5)–(5.8) ensure that the H-lines are frozen into the fluid during the
perturbation. Moreover, it is readily confirmed that they also preserve the cross-helicity
of u and H for all material volumes VH defined by H · n = 0 on SH . We conclude
therefore, that (5.5)–(5.8) constitute a generalized isovortical perturbation. Following

Arnold (1966a) we would expect d̂1E to be zero, and indeed this is readily confirmed

by direct substitution. We would also expect d̂2E to be conserved by the linearized
dynamics, and again this may be confirmed by direct substitution. (The proof for
two-dimensional motion is given by Davidson 1998 and for three-dimensional MHD



An energy criterion for linear stability of conservative flows 343

by Vladimirov & Ilin 1998.) It follows that a sufficient condition for (formal) stability

is that d̂2E is of definite sign for all non-trivial η̂ and η̂∗.
The question now arises as to the relationship between the Kelvin–Arnold method

for MHD and (2.26). It is not difficult to show that, by virtue of (5.7) and (5.8),

d̂2T (η̂) + d2T (η̂) =
1

2

∫
˙̂η2 dV ,

where, as always, η̇ = δ1u− ∇× (η × u0) and we have restricted η to η̂. Now we also

have d2V = d̂2V since H is frozen into the fluid. It follows that the second variation
in E under a d̂-perturbation is

d̂2E = d̂2T + d̂2V =
1

2

∫
˙̂η2 dV − d2L(η̂).

On comparing this with (2.26) we see that e = d̂2E whenever η is restricted to η̂. Thus
the Kelvin–Arnold variational principle applied to MHD is a special case of (2.26)

with d̂2E acting as a Hamiltonian for the truncated system. Note, however, that (2.26)
is a stronger result, since the Kelvin–Arnold principle only applies to perturbations
which are initially of the generalized isovortical type. In the language of Hamiltonian
mechanics, Arnold’s variational principle applies only to symplective leaves in the
function space of u and H . Equation (2.26), on the other hand, applies to all points
in function space.

We conclude this section with a discussion of instability criteria. It is well-known
that Arnold’s criterion provides only a sufficient condition for stability. Indeed, many

authors have pointed to examples of stable Euler flows in which d̂2E is indefinite
in sign. By implication a positive d2L cannot ensure instability. Yet, for the static
equilibria discussed above, our stability condition is both necessary and sufficient.
Why should this be so? In this respect it is informative to return to Biskamp’s proof
of the necessity of d2V > 0 for the stability of static equilibria, adapted now to
non-static equilibria. When u0 is non-zero, and W (η) is positive for some η (so that
our stability criterion is violated), the steps leading up to (5.4) remain valid. Hence
exponential growth of a disturbance is ensured provided the integral on the right of
(5.4) is positive or zero. This is certainly the case if η̇ and η have the same spatial
structure. Consequently, if the base flow can support normal modes of fixed spatial
structure, and W (η) > 0 for that mode, instability results. In fact, this is self-evident
since choosing initial conditions such that e = 0 gives, for that mode,

1

2

∫
η̇2 dV = W (η) = γ2

∫
1
2
η2dV

for some γ. This gives exponential growth, η ∼ exp [γt]. However, it seems unlikely
that such modes exist, as the following trivial example illustrates.

Consider the MHD flow u0 = Ωrêθ , H0 = au0 (for some constant a), in the domain
0 < r < R. We now examine the stability of this to two-dimensional disturbances,
η = η(r, θ). It is readily confirmed by direct substitution that the curl of (3.1) yields[

∂

∂t
+ Ω(1 + a)

∂

∂θ

] [
∂

∂t
+ Ω(1− a) ∂

∂θ

]
∇2(rηr) = 0. (5.9)

The resulting solutions are stable Alfvén waves travelling along the H-lines (either
clockwise or anti-clockwise) and riding on the back of the base flow:

ηr = ηr(θ − Ω(1± a)t).
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If we apply Arnold’s criterion to this, or indeed any two-dimensional MHD flow, we

find that d̂2E is indefinite in sign whenever |u0| > |H0|. (See for example, Davidson
1998 or else § 6.) Thus the flow is stable, despite the fact that W (η) can adopt positive
values. This simple example illustrates that Arnold’s criterion (and ours) fails to
provide a necessary condition for stability. Moreover, it provides a hint as to why
(5.4) and the associated arguments prove fruitless when u0 6= 0. The key point is that
any disturbance will be advected by the base flow as well as propagate with the group
velocity of the underlying wave motion (Alfvén waves, inertial waves, etc). It seems
unlikely, therefore, that normal modes of fixed spatial structure can be identified and
so the right-hand integral in (5.4) will usually be indefinite in sign.

6. Some new results for MHD flow
6.1. Non-parallel versus co-linear flows

We now focus on MHD flow, where our conserved, quadratic functional reduces to
that of Friedlander & Vishik (1990). It is well-known that there is a fundamental
distinction between base flows for which u0 and H0 are parallel and those in which
they are non-parallel. Here we show that when u0 and H0 are co-linear we may identify
a wide range of stable, steady flows. Moreover, the stability of such flows may be
determined very simply by examining the stability of an equivalent magnetostatic
equilibrium, constructed in a particular way from u0 and H0. When u0 and H0 are
non-parallel on the other hand, d2L is always indefinite in sign, suggesting instability.
Our starting point is (2.27) which, for MHD flow, simplifies to

d2L = −1

2

∫ [
(d1H)2 +H0 · ∇× (η × d1H)

−(d1u)2 − u0 · ∇× (η × d1u)
]

dV , (6.1)

where

d1u = ∇× (η × u0), d1H = ∇× (η ×H0).

We now note that, when u0 and H0 are non-parallel, d2L is indeed indefinite in
sign. Consider a short-wavelength disturbance for which kl � 1, k being a typical
wavenumber and l a typical scale for u0. Then (6.1) reduces to

d2L ≈ −1

2

∫ [
(H0 · ∇η)2 − (u0 · ∇η)2

]
dV . (6.2)

Now suppose η varies rapidly in the direction of u0 but slowly in the direction of H0;
then d2L is positive. The converse is also true: d2L is negative when η varies slowly
in the direction of u0 but rapidly in the direction of H0. Thus, provided u0 and H0

are not parallel, d2L is always indefinite in sign and our criterion is violated. This
was observed by Friedlander & Vishik (1990, 1995) and is the first hint that all such
flows are unstable. We return to this idea in § 6.3. First, however, we consider flows
in which u0 and H0 are co-linear.

6.2. Flows in which u0 and H0 are parallel

We are looking for stable solutions of

u0 ×H0 = 0, u0 ×Ω0 −H0 × J 0 = ∇C. (6.3a, b)

We shall show that stability of system (6.3) can be determined by examining the
stability of an equivalent magnetostatic equilibrium, and that for every stable magne-
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tostatic equilibrium we can construct a family of stable, non-static equilibria. From
(6.3a) we have

u0 = αH0, H0 · ∇α = 0.

Suppose we take α as constant. (We relax this condition later.) Then

H0 × J 0 = −∇bC/(1− α2)c (6.4)

and

d2L = − 1
2
(1− α2)

∫ [
(d1H)2 +H0 · ∇× (η × d1H)

]
dV . (6.5)

Thus we have constructed a magnetostatic equilibrium, H s, from (u0,H0), in which
H s = H0 and Cs = C/(1− α2). Moreover, H s is stable if and only if

d2Ls = −1

2

∫ [
(d1H)2 +H s · ∇× (η × d1H)

]
dV

is negative definite. It follows from (6.4) that (u0,H0) is stable provided: (i) |u0| < |H0|;
and (ii) the static magnetic field, H s, is stable. However, there are several stable
three-dimensional static equilibria, such as force-free fields. (See for example Moffatt
1986.) By implication there also exist stable three-dimensional non-static equilibria.
Specifically, for each stable magnetostatic field, H s, we can construct a stable non-
static equilibrium, u0 = αH s, H0 = H s.

We now turn to two-dimensional flows. Here the restriction α= constant can be
lifted. This is true of planar and poloidal flows although, in the interests of brevity,
we consider only the planar case. We shall show that, once again, the stability of
an equilibrium may be determined by the stability of an equivalent magnetostatic
equilibrium, and that for every stable magnetostatic equilibrium we may construct
a family of stable non-static equilibria. We start by introducing Φ and Ψ , the
flux-function and stream-function for H and u, defined via H = ∇ × [Φêz] and
u = ∇× [Ψ êz]. Then (6.3a, b) reduce to

Φ0 = Φ0(Ψ0), ∇2Φ0 + C ′(Φ0) = (∇2Ψ0)Ψ
′
0(Φ0), (6.6a, b)

while (6.1) yields the well-known functional

d2L = −1

2

∫ [
(1− (Ψ ′0)

2)(∇φ)2 + gφ2
]

dV . (6.7)

Here φ = d1Φ = −η · ∇Φ0 and g is (see Davidson 1998)

g = Ψ ′0∇2Ψ ′0 +Ψ ′′0∇2Ψ0 − C ′′0 (Φ0). (6.8)

As noted by several authors, and confirmed by (6.7), we can ensure stability only if
|Ψ ′0| < 1 and we now restrict ourselves to such cases. Next, consider the flux-function
Φs, and associated magnetic field, H s, defined by

Φs =

∫ Φ

0

(1− (Ψ ′0)
2)1/2 dΦ, (6.9a)

H s = (1− (Ψ ′0)
2)1/2H0. (6.9b)

Since |u0| < |H0|, the integrand in (6.9a) is real. Substituting (6.9a) into (6.6b) we
obtain

∇2Φs + C ′(Φs) = 0. (6.10)
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β α

D u H

Figure 1. Clebsch variables.

On comparison with (6.6b) we see that Φs represents a magnetostatic equilibrium.
Moreover, if we evaluate

d2Ls = −1

2

∫ [
(∇φs)2 + gsφ

2
s

]
dV , (6.11)

where φs = −η · ∇Φs and gs = −C ′′(Φs), it is readily demonstrated that d2Ls = d2L.
Now suppose that H s is stable. Then the stability of the magnetostatic equilibrium
ensures d2Ls is negative definite which, from (6.11), ensures that (u0,H0) is stable.
Once again, the stability of a non-static equilibrium may be assessed from the stability
of the appropriate magnetostatic field.

6.3. Flows in which u0 and H0 are non-parallel

We have seen that flows in which u0 and H0 are not parallel violate our stability
criterion and so are potentially unstable. We now try to identify some of the unstable
modes. We shall consider short-wavelength localized disturbances to (u0,H0). We start
with the equilibrium equation

u0 ×H0 = ∇D. (6.12)

Now D is a well-defined single-valued scalar function (Hameiri 1983). Thus the
surfaces D= constant are combined stream-function–magnetic-flux surfaces. Let us
now assume that both u0 and H0 allow a local representation in terms of Clebsch
variables:

u0 = (∇α)× (∇D), H0 = (∇β)× (∇D). (6.13)

Of course, when the helicity of either field is non-zero such a representation cannot be
globally valid. Nevertheless, we are concerned here with a local description of the flow,
and not global modes of instability, and so (6.13) provides a useful representation of
u0 and H0. α and D are the local stream-function surfaces while β and D are the local
magnetic-flux surfaces (see figure 1). From (6.12) we have

(∇α× ∇β) · ∇D = 1

and it follows from (6.13) that

u0 · ∇β = −1, H0 · ∇α = 1. (6.14a, b)

We shall return to these expressions shortly. Now suppose that, at t = 0, η is zero
everywhere except within a small sub-domain of the flow. As long as η remains a
local disturbance we may use representation (6.13) for (u0,H0). Let us now look for
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solutions of (3.1) in the form of a wave packet. In particular, consider

η = η̂γ(β, t)H0, (6.15)

where η̂ is a slowly varying amplitude and γ(β, t) represents a fast oscillation across
the β-planes. We shall assume that the spatial and temporal derivatives of η̂ are
sufficiently small, by comparison with those of γ, that they may be neglected in the
following analysis. Then, using γ′ to represent the rate of change of γ with respect to
β, we have

∇× [η × u0] = −η̂γ′H0, ∇× [η ×H0] = 0,

and expression (3.4) for F (η) becomes

F (η) = [−γ′′H0 + 2γ′u0 · ∇H0 − ∇(γ′u0 ·H0)]η̂.

However, from (6.14a)

u0 · ∇(γ′H0) = −γ′′H0 + γ′u0 · ∇H0

and so F (η) can be rewritten as

F (η) = [γ′′H0 + 2u0 · ∇(γ′H0)− ∇(γ′u0 ·H0)]η̂.

Our governing equation for η, (3.1), now simplifies to

(γ̈ − γ′′)H + 2u0 · ∇[(γ̇ − γ′)H] = ∇(·). (6.16)

Next, we expand the second term on the left, ignore spatial variations in H0 by
comparison with those of γ, and eliminate the unknown gradient function by taking
the curl of (6.16). The result is (

∂

∂t
− ∂

∂β

)2

γ′ = 0 (6.17)

which has general solution

γ′ = γ1(β + t) + tγ2(β + t). (6.18)

This represents two transverse waves of fixed shape propagating along the surface
D= constant in a direction normal to H0. The second wave, γ2, grows linearly in
time and is reminiscent of the algebraic instability found in non-Beltrami Euler flows.
However, because we can only follow such waves for a limited period of time we
cannot conclude that (6.19) represents an unstable mode, although it does seem
plausible.
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